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Abstract—Due to the difficulty of obtaining high-quality data
in real-world scenarios, datasets inevitably contain noisy labeled
data, leading to inefficient data usage and poor model perfor-
mance. Thus, noisy label detection is an important research
topic. Previous efforts mainly focus on noisy label detection on
specific datasets that have been collected. Some works select
clean samples based on relations between representations during
the training process; some works utilize confidence outputs of
a pre-trained model for noisy label detection. However, how
to perform efficient and fine-grained noisy label detection on
constantly arriving datasets in a data lake with a large amount
of inventory data has not been explored. The rapidly growing
volume and changing distribution of data make conventional
methods either incur large computation overhead due to repeated
training or become increasingly ineffective on newly arriving
data. To address these challenges, in this work, we propose a novel
approach ENLD to perform efficient and accurate noisy label
detection on incremental datasets. Our extensive experiments
demonstrate that ENLD outperforms the next best method
in both efficiency and accuracy, which achieves 3.65×-4.97×
detection speedup and higher average f1 scores with various noise
rate settings.

I. INTRODUCTION

In recent years, deep learning has made great achievements
in various academic and industrial fields, which usually rely
on a large number of labeled datasets [1] [2]. However, in the
real world, both amateurs and experts inevitably produce noisy
labeled data [3]. Therefore, noisy label detection and learning
with noisy data have attracted much attention.

In industry, ubiquitous data lakes or data platforms provide
massive data for deep learning systems, which also pose a
huge challenge to data quality management [4]. There are
two mainstream approaches to deal with noise labels, robust
architecture and sample selection. Robust architecture reduces
the influence of noisy labels to obtain a deep model with better
performance by proposing robust training methods, such as
noisy adaptation layer [5] [6], loss correction [7] [8] and label
refurbishment [9] [10]. Sample selection explicitly filters noisy
labeled data considering the impact of samples on training loss
or the softmax output of deep models. Compared with the
robust architecture, it can obtain a clean dataset with stronger
reusability. A widely adopted idea for sample selection is to
use some selection metrics (e.g. loss tracking) on samples
during multiple rounds of the training process, such as O2U-
Net [11] and INCV [12]. Topofilter [13] proposes a graph-
based method in the latent representational space to collect

clean data and drop isolated data. Confident learning [14]
designs a framework to filter noisy labeled data with directly
estimated joint distribution of noisy labels and unknown true
labels based on confidence outputs of the deep model which
is trained on noisy datasets.

Previous work, however, focus on datasets that have been
collected. But for real-world data lakes and platforms, new
data usually arrive constantly. Many platforms need to con-
stantly perform accurate and efficient label quality assessments
on newly arriving data, such as crowdsourcing platforms
and data trading platforms [15] [16] [17]. Directly adopting
existing training-based methods, e.g., Topofilter [13] and other
loss tracking methods [11] [12], to detect noisy labels in
incremental data is difficult to achieve good performance due
to the lack of sample diversity and unbalanced categories in
the incremental dataset. But applying those methods to both
the inventory dataset and incremental dataset leads to a huge
computation overhead due to the excessive sample number of
the inventory data. Besides, the noisy label detection model
trained on the inventory dataset usually cannot well adapt
to specific incremental datasets. Pretrain-based methods, like
confident learning [14], have low computation overhead but
poor performance of noisy label detection for incremental
datasets due to the changing data distribution. How to achieve
efficient and accurate noisy label detection on constantly
arriving datasets in a data lake is still an unexplored problem.

In this work, we focus on efficient and adaptive noisy label
detection on constantly arriving incremental datasets in a data
lake with a large amount of inventory data, and address the
following challenges:

(1) How to leverage the knowledge from massive inventory
data and how to adapt to the unknown data distribution of
incremental data? Incremental datasets usually only contain
a small number of samples from a part of classes of the
inventory data and have unbalanced class distributions. Using
the incremental datasets only cannot achieve satisfactory noisy
label detection. It is crucial to mine and establish associations
between incremental datasets and the inventory data, as well as
to select proper samples from the inventory data as contrastive
samples to improve the detection performance and reduce the
training cost. During the selection of contrastive samples, it
is necessary to consider the data distribution of incremental
datasets for better adaptivity.

(2) How to ensure efficiency and performance during per-



forming continuous noisy label detection tasks? The platform
will receive a large number of continuous noisy label detection
tasks, each of which is time-consuming and computationally
expensive. This requires our approach to be designed and
implemented in a way that ensures both efficiency and per-
formance.

Facing the above challenges, we propose a novel framework
ENLD to efficiently perform noisy label detection on incre-
mental datasets. The core idea of our design is to sample con-
trastive samples in inventory data, which greatly benefit identi-
fying ambiguous samples in incremental datasets, and discover
clean samples by majority voting through multiple fine-tuning
processes. Specifically, ENLD is a two-stage framework. First,
ENLD trains a general model and estimates the conditional
probability of label mislabeling through inventory data. Then,
ENLD conducts fine-grained noise label detection with con-
trastive sampling for specific incremental datasets, including
multiple re-sampling and model fine-tuning. Our contributions
are summarized as follows:

•We propose a novel framework ENLD to efficiently per-
form noisy label detection on incremental datasets. We con-
sider label probabilities, output confidences of samples, and
relationships between feature representations, and carefully
design a set of techniques including contrastive sampling and
fine-grained noisy label detection. ENLD achieves superior
noisy label detection performance for newly arriving datasets,
requiring only a small amount of fine-tuning.

•We analyze the rationality of the selected samples in
contrastive sampling. Our analysis proves that the high-quality
samples in inventory data that are close to the representa-
tions of ambiguous samples in incremental datasets can bring
greater benefits to the training process. We also compare the
influence of different sampling strategies on the fine-grained
noise label detection in experiments.

•We extensively evaluate our framework on public datasets
with various noise settings. Experiments demonstrate that
our framework outperforms existing methods in both perfor-
mance and efficiency for noisy label detection on incremental
datasets. The average f1 score of ENLD achieves 0.9191
for EMNIST and 0.8194 for CIFAR100 for various noise
settings, which outperforms the next best method, Topofilter.
Compared with Topofilter, ENLD also achieves 4.09× and
3.65× detection speedup on average process time for EMNIST
and CIFAR100, respectively. For a more complex classification
task, Tiny-Imagenet, ENLD performs significantly better than
the baseline methods. It achieves an average f1 score of 0.7297
while the average f1 score of Topofilter is only 0.6171, and
achieves 4.97× detection speedup on average process time.

II. RELATED WORK AND PRELIMINARIES

A. Noisy Label Detection Methods

In noisy learning, recent works focus on methods of sample
selection [18] [19], which attempts to first select clean samples
in the dataset and train the DNN on the filtered cleaner
dataset. Decouple [20] maintains two DNNs and selects clean
samples for the model update by the difference in label

predictions between two DNNs. MentorNet [21] completes
sample selection through a collaborative learning method, in
which the pre-trained mentor DNN guides the training of a
student DNN, and the student receives clean samples with
a high probability provided by the mentor. Co-teaching [22]
maintains two DNNs, each DNN completes the selection of
small loss samples and shares the results with another DNN for
future training. Based on Co-teaching, Co-teaching Plus [23]
integrates the disagreement strategy of Decouple. INCV [12]
randomly splits the dataset into two parts and selects clean data
through cross-validation. SELFIE [24] selects clean data by
small-loss criteria and selective refurbishment of samples. [13]
proposes a graph-based method in the latent representational
space named Topofilter to collect clean data and drop isolated
data. Confident learning [14] proposes a framework to filter
noisy label data with directly estimated joint distribution of
noisy label and unknown true label based on the softmax
output of the deep model, which is trained on noisy datasets.
However, previous works focus on collected datasets. It is not
applicable to the scenario where noisy label detection needs
to be performed repeatedly on the newly added datasets. In
this work, we mainly focus on how to conduct efficient and
accurate noisy label detection for incremental datasets.

B. Sample Selection Strategy

ENLD involves a sample selection process in inventory data
for incremental datasets during the training process, and there
are also many data selection strategies used in active learning
methods [25] and semi-supervised learning methods [26]. And
in active learning, the information entropy and confidence are
widely used metrics to measure the uncertainty of samples for
current models. It means samples with large uncertainty will
bring great benefits to the training of the current model. Meth-
ods [27] [28] adopt the uncertainty-based sampling strategies
to select samples during the training process. Moreover, the
samples with the highest confidence tend to be selected and
given a pseudo label to participate in the training in semi-
supervised learning methods [29] [30] [31] and active learning
methods [32]. In this work, we also conduct experiments on
replacing different sampling strategies in the fine-grained noisy
label detection method of ENLD to explore the impact of
different sample selection strategies in Section V.

III. PROBLEM AND MAIN IDEA

A. Problem Description

Given a large amount of inventory data (e.g. in a data lake)
I = {(xIi , ỹIi )} with a number of classes and samples, the
system needs to perform noisy label detection on incoming
incremental datasets D = {(xDi , ỹDi )}. Here, ỹi represents
the observed label. y∗i represents the unknown true label.
The noise label in both I and D is generated by a label
probability transition matrix Ti,j = P (ỹ = j|y∗ = i). It
represents the probability of mislabeling between labels in
manual experience. In the actual scenario, Di may be the
dataset collected by the data platform or the dataset expected to
obtain noisy label detection results from the data platform. The



TABLE I: Notation used in ENLD.

Notation Definition
ỹ The observed label of the sample
y∗ The true label of the sample
I The inventory data in the data platform
D The constantly arriving incremental datasets
H The high-quality samples in the inventory data
A The ambiguous samples in the incremental dataset
θ The general deep model trained with the inventory data
θ′ The finetuned model for incremental datasets based on θ
M(x, θ) The confidence output of sample x by the deep model θ
M̂(x, θ) The feature vector of sample x by the deep model θ
xLi , ỹ

L
i The samples and observed labels in set L

goal of our framework is to efficiently perform accurate noisy
label detection on the incremental dataset. Important notations
are summarized in Table. I.

B. Main Idea

If we directly use the confidence outputs of a pre-trained
general model on the incremental dataset to detect noisy sam-
ples, the performance is very dependent on the generalization
ability of the general model trained by noisy labels, which
often performs poorly on complex classification tasks. And
previous training-based methods on the inventory dataset and
incremental data will introduce a lot of computing overhead,
which is not applicable to our scene as well.

To achieve requirements of high efficiency and accuracy,
we expect to spend only a small amount of fine-tuning to
achieve superior noisy label detection results for specific new
datasets. Thus, we propose a two-stage framework for noisy
label detection on incremental datasets, which maintains a
general model and find-tune on different incremental datasets.
Meanwhile, different incremental datasets have different data
distributions and ambiguous samples for the general deep
model. Here, ambiguous samples mean that their observed la-
bels and predicted labels of the current model are inconsistent
as defined in Definition. 1. The main idea of our work is to
select high-quality contrastive samples for ambiguous samples
in incremental datasets, and then finetune the model on specific
data distribution to achieve accurate noisy label detection
results. We consider label probabilities, output confidences,
and feature representations of the current model to select con-
trastive samples which greatly benefit identifying ambiguous
samples in incremental datasets in contrastive sampling.

IV. FRAMEWORK OF ENLD

In this section, the detailed design and implementation of
ENLD will be introduced. We will first describe the framework
overview of ENLD, then contrastive sampling, fine-grained
noisy label detection, and finally the model update.

A. Framework Overview

We describe and introduce the framework overview of our
proposed ENLD as shown in Algorithm 1 and Fig. 1. The
platforms suitable for deploying the ENLD framework have
a certain amount of inventory data, and incremental datasets
with noise label detection requests arrive continuously. As for
the platform, first, ENLD divides the inventory data I into It

and Ic randomly. And then, ENLD initializes a general model
θ with It and estimate the probability of P̃ (y∗ = j|ỹ = i).
After the initialization of ENLD, the noisy label detection of
incremental data sets can be performed. For example, when an
incremental dataset D arrives, ENLD first performs contrastive
sampling on current D to obtain an initial contrastive sample
set C. Then a fine-grained noisy label detection method
with re-sampling will be performed to obtain the selected
clean part S and noisy part N of D based on the general
model θ. Moreover, during the noisy label detection process
of incremental datasets, the system can also perform data
selection for the inventory data. The platform can choose to
update the general model and re-estimate the probability of
P̃ (y∗ = j|ỹ = i).

Algorithm 1 Framework of Efficient Noisy Label Detection
(ENLD)
Input: the inventory data I = {(xIi , ỹIi )}, the incremental
datasets {Di}ti=1 ,the parameter of contrastive samples size k
Output: the noisy label detection result Si, Ni

1: θ, P̃ , It, Ic = model init(I);
2: H = {(x, ỹ) ∈ Ic : argmax M(x, θ) = ỹ};
3: Sc = ∅;
4: while Di arrives do
5: H ′ = {(x, ỹ) : ỹ ∈ label(Di) and (x, ỹ) ∈ H};
6: A = {(x, ỹ) ∈ Di : argmax M(x, θ) 6= ỹ};
7: C = contrastive sampling(A,H ′, P̃ , k, θ);
8: Si, Ni, S

′
c = fined grained NLD(C,Di, θ);

9: Sc = Sc
⋃
S′c;

10: θ, P̃ , It, Ic = model update(Sc, It, Ic); // Optional;
11: end while

B. Model Initialization & Probability Estimation

In this part, the system needs to obtain a general model and
estimate the probability of label mislabeling.

Model Initialization: First, we divide the inventory data I
into It and Ic uniformly and randomly. Here, It represents
the training set which is used to initialize and train a general
model θ, and Ic is the candidate set for contrastive samples
to accommodate special incremental datasets. In the system
implementation, we use It to train the initialization model
with the augmentation method Mixup [33]. Mixup randomly
mixes the samples and labels with a Beta distribution for
generalization performance as shown in Eq. 1 and Eq. 2, where
λ ∼ Beta(α, α). We set the parameter of the Beta distribution
α = 0.2 in all experiments in Section V.

x̂ = λxi + (1− λ)xj (1)

ŷ = λyi + (1− λ)yj (2)

Probability Estimation: According to the assumption ỹ∗ =
argmax p̃(ỹ;x, θ) in [12], it means that the predicted label
and the true label have the same distribution. We utilize the
confidence output of the model M(x, θ) on Ic and observed
label of each sample to estimate the joint distribution J of true



Data Lake/Data Platform

Model Init/Model
Update

Step 0:  
Initialize model

General Deep Model

Fine-grained Noisy
Label Detection

Candidate Samples Dataset 1

Incremental Datasets

...
Step 2

Noisy Label
Detection Results

Optional Step:  
Update model

Step 1

Contrastive
Sampling

Dataset 2

fine-tune

General Model Adaptive Model

Fig. 1: Overview of ENLD framework. Step 0: ENLD initializes a general model θ and estimated the conditional probability.
Step 1& Step 2: ENLD performs fine-grained noisy label detection with contrastive sampling for each dataset when incremental
datasets arrive. Optional Step: ENLD can choose to update the general model and re-estimate the conditional probability by
the model update process. The dash line between the general deep model and candidate samples means that ENLD utilizes
the general model to select high-quality samples from candidate samples for contrastive sampling.

label y∗ and observed label ỹ as shown in Eq. 3 and Eq. 4.
Here, M(x, θ) = (o1, o2, ..., ol) represents the softmax output
of each class by deep model θ and the input sample x. oi
represents the confidence of class i and l represents the total
categories of the classification task. And argmax M(x, θ)
represents the predicted label of the sample x.

Ji,j = |Dỹ=i,y∗=j | (3)

Dỹ=i,y∗=j = {x ∈ Dỹ=i : argmax M(x, θ) = j} (4)

As shown in Eq. 5, we can estimate the conditional prob-
ability P̃ (y∗ = j|ỹ = i) of observation labels and true labels
through the estimated joint distribution J :

P̃ (y∗ = j|ỹ = i) =
P̃ (y∗ = j, ỹ = i)

P̃ (ỹ = i)
=

Ji,j∑
k Ji,k

(5)

Finally, we obtained the general model θ for fine-grained
noisy label detection and the estimated conditional probabili-
ties P̃ that will be used in the contrastive sampling method.

C. High-quality and Ambiguous Samples
Definition 1. We define the samples with argmax M(x, θ) 6=
ỹ in the incremental dataset D as the set of ambiguous samples
A. And we define the samples with argmax M(x, θ) = ỹ in
the inventory data I as the set of high-quality samples H .

In this section, we introduce the definition of high-quality
samples in inventory data and ambiguous samples in the
incremental data as shown in Definition. 1 by the predicted
label of the model θ and observed label. We define the sample
in the incremental dataset D whose predicted label is inequal
to the observed label as an ambiguous sample. We only sample
contrastive samples for ambiguous samples rather than all
samples in the incremental dataset in order to reduce the
number of contrastive samples. And we define the sample in
the inventory dataset Ic whose predicted label is equal to the
observed label as a high-quality sample. In the subsequent
comparative sampling process, we expect the selected sample
in contrastive sampling to be a clean sample.

D. Contrastive Sampling

In this section, we propose contrastive sampling to provide
high-quality contrastive samples for the ambiguous samples in
D. The core idea is to select contrastive samples with great
training benefits for ambiguous samples in fine-tuning of fine-
grained noisy label detection. To achieve this goal, we expect
to select samples that have proximate feature representations
with the targeted ambiguous sample and have the same true
labels as the ambiguous samples. For example, a sample
with an observed label ’bowl’ in D is an ambiguous sample.
Intuitively, selecting a clean sample with the label ’bowl’ and
similar feature representations to finetune the general model is
helpful to determine whether the ambiguous sample is a noise
sample. We carry out theoretical and experimental analysis on
this intuition.

As shown in Algorithm 1 and Algorithm 2, when the noisy
label detection request of a new dataset arrives, contrastive
sampling will be utilized to obtain an initial contrastive
sampling set C, and then it will be performed repeatedly in the
fine-grained noisy label detection method to update the set C
during the training process. First, we give a hyperparameter
k, which represents the size of contrastive samples k|A| in
each sampling process. For each ambiguous sample, we first
determine the label according to the estimated probability P̃ .
According to Corollary 1, for a specific incremental dataset
D, we only select contrastive samples in a subset H ′ in Ic
which contains observed labels in label(D). Here, label(D)
represents the label set of D. Because, according to Corollary
1, the true label of a sample will be contained in label(D) with
probability of 1−(1−P (ỹ = m|y∗ = m))|D

m|. In practice, the
probability of mislabeling 1 − P (ỹ = m|y∗ = m) is usually
low. Therefore, as long as there is a certain number of Dm in
the D, the true label m will have a great probability of being
included in label(D). Here, Dm represents samples in dataset
D whose true labels are class m. And then, for an ambiguous
sample xi, we choose the k nearest samples in the high-



Algorithm 2 Contrastive Sampling
Input: the ambiguous samples of incremental dataset A,
the high-quality samples of inventory data H , the estimated
probability P̃ , parameter of contrastive samples size k, the
general model θ
Output: the contrastive samples C

1: C = ∅;
2: A = {Ai};
3: for Ai in A do
4: for xi in Ai do
5: j = random label(i, P̃ , label(H ′));
6: Ci = k nearest(M(xi, θ), Hj , k);
7: C = C ∪ Ci;
8: end for
9: end for

10: return C

Selected Contractive Samples

Ambiguous Samples High-quality Samples

Fig. 2: An example of contrastive sampling.

quality samples in inventory data by the output representations
M̂(x, θ) in Euclidean distance as the contrastive samples Ci
as shown in Eq. 7. M̂(x, θ) = (v1, v2..., vc) represents the
feature output in front of softmax classifier layer by the deep
model θ with the input sample x. Here, c represents the length
of feature representations M̂(x, θ).

Corollary 1. In an incremental dataset D, if samples of class
Dm = {(xi, ỹi)|y∗ = m} in D is collected uniformly from
the true data distribution of class m. Then, the probability of
class m not in label(D) is (1− P (ỹ = m|y∗ = m))|D

m|.

Poof Sketch. According to the conditional probability P (ỹ =
m|y∗ = m), the probability of mislabeling represents:

P̂ = 1− P (ỹ = m|y∗ = m) (6)

The probability of class m not in label(D) is equivalent to
that all samples Dm are mislabeled, and the probability is
(1− P (ỹ = m|y∗ = m))|D

m|.

S(xi, xj) = ||M̂(xi, θ)− M̂(xj , θ)|| (7)

Finally, we obtain a contrastive sample set C for the
ambiguous set A. According to Corollary 2, ideally, if the
estimated probability P̃ (y∗ = i|ỹ = k) is equal to the true
probability P (y∗ = i|ỹ = k), the label distribution L(C)
of sampled contrastive set will be the same as the true label
distribution L(A) of set A.

Corollary 2. (Ideal) L(C) represents the label distribution of
set C. If the estimated probability P̃ (y∗ = i|ỹ = k) = P (y∗ =
i|ỹ = k), the sampled contrastive set satisfies E(L(C)) =
L∗(A), where P (y∗ = i|ỹ = k) represents the true conditional
probability and L∗(A) represents the true label distribution of
set A.

Poof Sketch. According to the Algorithm 2, the expected label
distribution of set C represents:

E(L(C))i =
∑
k

L(A)k · P̃ (y∗ = i|ỹ = k) (8)

According to the total probability theorem:

L∗(A)i =
∑
k

L(A)k · P (y∗ = i|ỹ = k) (9)

Thus, when P̃ (y∗ = i|ỹ = k) = P (y∗ = i|ỹ = k), we obtain
E(L(C))i = L∗(A)i.

Moreover, we analyze the rationality of contrastive samples
we select. First, we define the objective function of our model
as min losstest(θ,Atest). Here, Atest is an unknown valida-
tion dataset that contains the same samples as the ambiguous
set A and contains true labels rather than observed labels.
As for xtest = (xi, yi) ∈ Atest, the contribution of adding a
contrastive sample xI = (xi + ε, yi) is shown in Definition
2. It means the loss gain of adding xI in epoch t on xtest
after training. According to the Corollary 3, if the gradient
of loss function ∇θt loss(θt, x) satisfies L Lipschitz smooth
condition, the4I between adding xI and directly adding xtest
will be less than αL||∇θt−1

loss(θt−1, xtest)|| · ||ε||. It means
adding correct contrastive samples with closer representations
will bring greater benefits to the training process. This explains
why we select the nearest samples as contrastive sampling in
Algorithm 2.

Definition 2. I = {(xIi , yIi )} is the set of inventory data.
A = {(xAi , yAi )} is the set of ambiguous data in the incre-
mental dataset. Atest = {(xi, yi)} is the test set of correctly
labeled data corresponding to A. The object function is
min losstest(θ,Atest).

Definition 3. The contribution of a sample x for each sample
xtest ∈ Atest:

I(x, xtest) = loss(θt−1, xtest)− loss(θt, xtest) (10)

Corollary 3. xtest = (xi, yi) represents a sample in Atest,
and xI = (xi + ε, yi) represents a sample in the candidate
set of constrasive samples. And 4I = I(xtest, xtest) −
I(xI , xtest) represents the contribution gap between adding
xI and xtest. If the gradient of loss function ∇θt loss(θt, x)
satisfies Lipschitz Smooth condition, at epoch t, we get 4I ≤
αL||∇θt−1

loss(θt−1, xtest)|| · ||ε||.

Poof Sketch. At epoch t, with stochastic gradient descent after
adding a sample x, the model will be updated as follows:

losstest = loss(θt, Atest) (11)
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Fig. 3: Evaluation loss of the validation set Dtest on incremental datasets of CIFAR100. Origin represents the original loss
of general model θ. Random, Nearest-Only and Nearest-Related represent the loss after an epoch training by adding samples
with true labels using different strategies.

θt = θt−1 − α∇θloss(θt−1, x) (12)

Here, α is the learning rate. And the contribution of the
sample x:

I(x, xtest) = losstest(θt−1, xtest)− losstest(θt, xtest) (13)

According to the Lagrange mean value theorem:

loss(θt, xtest) = loss(θt−1 − α∇θloss(θt−1, xi), xtest)
(14)

loss(θt, xtest) = loss(θt−1, xtest)

−∇θt−1
losstest(θt−1, xtest) · α∇θt−1

loss(θt−1, x)
(15)

Then we get:

I(x, xtest) = α∇θt−1 loss(θt−1, xtest) · ∇θt−1 loss(θt−1, x)
(16)

And:
4I = I(xtest, xtest)− I(xI , xtest) (17)

4I ≤α||∇θt−1
loss(θt−1, xtest)||

· ||∇θt−1 loss(θt−1, xtest)−∇θt−1 loss(θt−1, x
I)||

(18)
According to the Lipschitz Smooth:

4I ≤ αL||∇θt−1
loss(θt−1, xtest)|| · ||ε|| (19)

And we also conduct experiments to support this con-
clusion as shown in Fig. 3(a) ∼ Fig. 3(d). We set the
general model θ as the initial training model for fine-tuning.
Dtest = {(xtest, y∗)} of D represents the validation set of
noisy set in the incremental datasets. We add samples with
true labels and train for an epoch to explore the impact of
adding strategies on the contribution to the current model.
Random represents adding |Dtest| samples with true label
randomly from Ic. Nearest-Only represents adding |Dtest|
samples with closest representations to each xtest from Ic and
corresponding true labels. Nearest-Related represents adding
|Dtest| samples with closest representations to each xtest from
Ic and true labels which are consistent with the true labels of

xtest. It can be concluded that the nearest strategy effectively
enables the model to obtain adaptive training and the final loss
on the validation set is significantly lower than the original
loss and the loss of random sample selection. Compared
with Nearest-Only, Nearest-Related is more likely to select
samples that make greater contributions to the training process.
And contrastive sampling is also a re-weighting process of
sampled contrastive samples. Although contrastive sampling
has sampled k|A| times, the final sampled set C actually
contains fewer samples than k|A|. This is because some
samples will be sampled more than once as shown in Fig. 2,
which also indicates that these samples are more important for
the current ambiguous sample set A. For example, a sample
can be the contrastive sample for multiple ambiguous samples
at the same time. The samples in the final sampled set C are
equivalent to having different weights and then participate in
the training process of fine-grained noisy label detection.

Implementation: Since constantly arriving datasets in-
volves multiple k-nearest query operations, the original time
complexity is O(c|A||H ′|). Thus, in implementation, we build
KD-Tree structures for each category in H . KD-tree is a binary
tree to organize vectors for more efficient nearest neighbor
searching. This will reduce the time complexity of k-nearest
operations to O(k|A|log|H ′|). It improves the efficiency of
the contrastive sampling that needs to be executed repeatedly.

E. Fine-grained Noisy Label Detection

In this section, we introduce the fine-grained noisy label
detection method in ENLD as shown in Algorithm 3. It
mainly consists of the following four parts: (1) warming
up process; (2) training and sample selection; (3) sample
update and re-sampling; (4) data selection of inventory data.
After contrastive samling, we can obtain an initial contrastive
sample set C which is related to ambiguous samples in the
incremental dataset. And the core idea of fine-grained noisy
label detection is to fine-tune the general model on contrastive
samples to select clean samples in incremental datasets. And
the algorithm will adjust the representation and update the
contrastive samples during the training process.



Algorithm 3 Fine-grained Noisy Label Detection
Input: the general model θ, the contrastive samples C, the
incremental dataset D, the candidate set of contrastive samples
Ic, the estimated probability P̃ , parameter of contrastive
samples size k, the training iteration t and the step s in each
iteration
Output: the clean set S and the noisy set N of the incremental
dataset D, the selected clean samples Sc of Ic

1: S,N, Sc = ∅;
2: countc = zeros(|D|);
3: I ′ = {(x, ỹ) : ỹ ∈ label(D) and (x, ỹ) ∈ Ic};
4: θ′ = warming up(θ, C, validate = D);
5: for i in iteration do
6: count = zeros(|D|);
7: for s in step do
8: θ′ = train(C, θ′);
9: Su = {(x, ỹ) : argmax M(x, θ′) = ỹ, x ∈ D};

10: count = update(count, Su);
11: Su = majority voting(count, Su);
12: S = S

⋃
Su;

13: N = {(x, ỹ) | x ∈ D and x /∈ S};
14: end for
15: A = {(x, ỹ) ∈ D : argmax M(x, θ′) 6= ỹ};
16: H ′ = {(x, ỹ) ∈ I ′ : argmax M(x, θ′) = ỹ};
17: countc = update(countc, H

′);
18: S′c = majority voting(countc, H

′);
19: Sc = Sc

⋃
S′c;

20: C = contrastive sampling(A,H ′, P̃ , k);
21: C = C

⋃
S;

22: end for
23: return S, N , Sc

Warming Up: At the first stage of the fine-grained noisy
label detection, we utilize the initial contrastive sample set C
and the incremental dataset D to train a better initialization
model as shown in Algorithm 3. We use C to train the model
θ for a given warming epoch number and verify the model on
the incremental dataset D, and we selected the model with the
highest validation accuracy during the warming up process.

Training and Sample Selection: There are two parameters
to control the training process t and s. Here, t represents the
total iterations of the training process and s represents the
number of steps for training and clean sample selection in
each iteration. In each iteration, we first initial a counting list
and use it to count whether the predicted label in each step is
equal to the observed label. In each step, we add the samples
with more than b s2c+ 1 count times to the clean samples set
S. For example, if a sample with an observed label ’bowl’
in the incremental dataset is predicted as ’bowl’ by the deep
model θ′ for more than b s2c + 1 times after an iteration of
finetuning, the sample will be selected as a clean sample. And
then, with the updated model θ′, we update the ambiguous
samples A and the high-quality samples H ′ together with
the representations M̂(x, θ). Finally, we perform contrastive

sampling to obtain a new contrastive set C and merge it with
the selected set S to form a new C to ensure the stability of
the training process. Here, we expect to select samples in high-
quality samples as clean as possible, so we use the confidence
output of θ to filter high-quality samples In practice, we
filter the high-quality samples by average predicted probability
p(yfx = i) ≥

∑
x p(y

f
x=i)

|{yfx=i}|
for cleaner contrastive samples. Here,

yfx represents the predicted label argmax M(x, θ).
Sample Update and Re-sampling: In the end of each

iteration, we utilize current model θ to update the ambiguous
samples in D and the high-quality samples in I ′. Then,
the contrastive sampling method is called again to select
contrastive samples for current ambiguous samples set A.
Since the contrastive samples participate in the finetune train-
ing of fine-grained noisy label detection, the model will be
more accurate in the selection of clean samples. The set of
ambiguous samples in D will gradually decrease as shown in
Fig. 13(b). We only use the current ambiguous samples set A
to sample the contrastive samples, which can not only save the
training cost by reducing the size of the contrastive samples,
but also make the sampled contrastive samples more suitable
for the current model and ambiguous samples.

Data Selection of Inventory Data: With the knowledge
of noisy label detection on incremental datasets, we propose
to select clean label Sc in each noisy label detection process
for the model update of ENLD. We use the same counting
method to count the number of times that each sample in the
inventory data sample is determined to be a clean sample.
In real scenarios, the inventory data usually serves multiple
downstream tasks, so it is required that the selected samples
of inventory data are as clean as possible. We adopt stringent
clean data filter criteria as default for inventory data. Thus,
we add the sample set S′c with t count times to the selected
samples set Sc in each iteration.

F. Model Update

After multiple noisy label detection tasks of incremental
datasets, the system can choose to update the general model
and re-estimate the probability. In this part, we introduce the
model update process of ENLD as shown in Algorithm 4.
ENLD utilizes the selected clean samples Sc in inventory
data to update the model θu and validate the model on It to
update the estimation probability P . Instead, in the later stage,
the original It is used as the candidate set Ic of contrastive
samples. In Section V, we verify that model update does
improve the generalization ability of the general model.

V. EVALUATIONS

In this section, we introduce the evaluation results of our
proposed framework ENLD and various compared methods
with public datasets and various noise rate settings.

A. Experimental Configuration

1) Datasets & Data Split: We use public image datasets,
EMNIST [34], CIFAR100 [35] and Tiny-Imagenet [36]. We
conduct three classification tasks, including a 26-categories



Algorithm 4 Model Update
Input: the selected set Sc on Ic, the inventory data Ic and It
Output: the updated model θu, the estimated probability Pu,
the updated It, Ic

1: θu = train(Sc);
2: It, Ic = swap(It, Ic);
3: Pu = evaluate(θu, Ic);
4: return θu, Pu, It, Ic

classification task on EMNIST letters with figure size
(28, 28, 1) and a 100-categories classification task on CI-
FAR100 with figure size (32, 32, 3) and a 200-categories clas-
sification task on Tiny-Imagenet with figure size (64, 64, 3).
Firstly, We randomly divided each dataset into inventory data
I and incremental dataset D according to the ratio of 2:1.
As for EMNIST, we divide D into 10 unbalanced incremental
datasets with 5 or 6 categories. As for CIFAR100, we divide
D into 20 unbalanced incremental datasets with 10 categories.
As for Tiny-Imagenet, we divide D into 20 unbalanced incre-
mental datasets with 20 categories.

2) Asymmetric Noisy Label: To generate noisy labels, We
corrupt the labels in our datasets with asymmetric noise, which
is more realistic than symmetric (or uniform) noise. Asymmet-
ric noise [3] means ∀i=jTij = 1 − η and ∃i6=j,i 6=k,j 6=kTij >
Tik. In this work, we adopt the pair asymmetric noise (widely
used in previous work), which means ∀i=jTij = 1 − η and
∃i 6=jTij = η. In our experiments, we adopt four noise rate
settings η ∈ {0.1, 0.2, 0.3, 0.4}.

3) Metrics: In our experiments, we mainly focus on the per-
formance and time cost of noise label detection on incremental
datasets. As for performance, we focus on the precision, recall,
and f1 score of the noisy label dataset D̃i

N detected from the
original dataset Di. And Di

N represents the groundtruth of
noisy label set in D. Thus, the precision metric is defined as
P =

|Di
N∩D̃

i
N |

|D̃i
N |

. The recall metric is defined as R =
|Di

N∩D̃
i
N |

|Di
N |

.

The f1 score is defined as F1 = 2 · P∗RP+R .
Time Cost: The cost time of performing noisy label detec-

tion on each incremental dataset, including the process time of
each incremental dataset and the setup time. The process time
represents the waiting time to obtain the noisy label detection
results when a new dataset arrives. The setup time represents
the time of system initialization, which mainly refers to the
training time of model initialization before processing noise
label detection requests in our experiments.

4) Baseline Methods: We compare methods of explicitly
selecting clean samples or noise samples as the comparison
method of noise label detection in recent years.

Default represents utilizing the general model θ to select
the noisy label data by argmax M(x, θ) 6= ỹ. Topofilter [13]
utilizes the feature representation to construct KNN graphs and
compute the largest connected component on each subgraph
class by the class during a training process. Confident Learning
[14] proposes a framework to filter noisy label data with di-
rectly estimated joint distribution of noisy label and unknown

true label based on the softmax output of the deep model,
which is pre-trained on noisy datasets. In our experiments, we
utilize the general model θ trained on It and validate on Ic
together with Di. We report two methods in confident learning
with the highest f1 score. Moreover, for a fair comparison, we
perform Topofilter only on a subset of inventory data I which
is related to the label set of incremental dataset label(Di).

5) Sampling Methods: We adjust the sample selection
strategy in the fine-grained noisy label detection method in
ENLD to analyze the impact of different strategies on the
performance of noisy label detection on incremental datasets.

Random Policy: Random-ENLD uniformly and randomly
selects samples in Ic; Highest Confidence Policy: HC-
ENLD selects samples (xi, ỹi) with highest confidence
max(M(x, θ)) according to outputs of current model in Ic;
Least Confidence Policy: LC-ENLD selects samples (xi, ỹi)
with lowest confidence max(M(xi, θ)) according to outputs
of current model in Ic; Entropy Policy: Entropy-ENLD se-
lected samples with highest entropy of M(x, θ) according
to outputs of current model in Ic; Moreover, we also pro-
pose Pseudo-ENLD to select samples with highest confidence
max(M(x, θ)) and replace the observed label ỹ by a pseudo
label argmax M(x, θ) by the current model θ.

6) Experiment Settings: Unless otherwise noted in our
experiments, we use Resnet-110 [37] with universal cross-
entropy loss function in all of our experiments for various
methods. To observe the generalization capability of ENLD,
we also conduct experiments on Densenet-121 [38] and
Resnet-164 [37] as shown in Section V-G. And we employ
evaluations on the server with Inter(R) Xeon(R) CPU E5-2650
with 2.20GHz and Tesla P100 GPU. Unless otherwise noted in
our experiments, we set the size of contrastive samples k = 3,
the training step s = 5, and the warming up epoch equal to
2. We set the training iteration t = 5 for EMNIST and t = 17
for CIFAR100 and Tiny-Imagenet.

B. Results of Incremental Noisy Label Detection

In this section, we compare the performance of various
methods on incremental datasets of EMNIST, CIFAR100 and
Tiny-Imagenet with various noise settings as shown in Fig. 4,
Fig. 5 and Fig. 7. We demonstrate the cost time of noisy
label detection on each incremental dataset as shown in Fig. 8
which contains both the setup time and process time. Default,
Confident Learning, and ENLD have the same setup time of
model initialization before performing noisy label detection
for incremental datasets with 5438.2s for EMNIST, 18058.4s
for CIFAR100, and 19716.7s for Tiny-Imagenet.

As shown in Fig. 4(c), Fig. 5(c) and Fig. 7(c), the training-
based method, Topofilter, and ENLD, is obviously superior to
the methods using only the confidence output of the general
model, Default, Confident Learning methods (CL-1 and CL-
2), but training process also brings additional computing over-
head. Compared with the next-best method, Topofilter, ENLD
achieves average f1 scores of 0.9191 for EMNIST and 0.8194
for CIFAR100 of various noise rate settings better than 0.9021
for EMNIST and 0.8139 for CIFAR100 of Topofilter. And as
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Fig. 4: Performance of noisy label detection results with various detection methods on EMNIST. Average precision, recall and
f1 score of 10 incremental datasets.
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Fig. 5: Performance of noisy label detection results with various detection methods on CIFAR100. Average precision, recall
and f1 score of 20 incremental datasets.
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Fig. 6: Performance of noisy label detection results with Densenet-121 and ResNet-164 on CIFAR100. Average precision,
recall and f1 score of 20 incremental datasets.

shown in Fig. 8, ENLD also improves the average process time
of each incremental dataset by 4.09× for EMNIST and 3.65×
for CIFAR100 compared with Topofilter. For a more complex
classification task, Tiny-Imagenet, ENLD is significantly better
than baseline methods in terms of performance and time cost.
Compared with the next-best method, it achieves an average
f1 score of 0.7297 better than 0.6171 of Topofilter and saves
4.97× process time. As for Default and CL methods, since
there is no additional training process, the performance of its
noise label detection depends very much on the initialized
model. Therefore, when the classification task is relatively
simple, such as EMNIST, the performance is better than that of
CIFAR100 and Tiny-Imagenet when the data and classification
are more complex. In summary, ENLD can efficiently and
accurately obtain the noise label detection results of new

arrival datasets compared with other baseline methods.

C. Training Process of ENLD

In this section, we demonstrate the noisy label detection
process as shown in Fig. 9 when the noise rate is 0.1 ∼
0.4 on CIFAR100. At the early stage of fine-grained noisy
label detection, most samples are selected as noisy samples,
so there is a high recall rate of noisy label detection. With the
updating of the model and the re-sampling of the comparative
samples, the precision and f1 score of noise label detection
gradually increases while the recall slowly decreases. Finally,
with the convergence of the method, the change tends to be
gentle. In the case of low noise rate, the process of the fine-
grained noise detection process is relatively stable, resulting in
a slow decline of label recall with the discovery of noise label
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Fig. 7: Performance of noisy label detection results with various detection methods on Tiny-Imagenet. Average precision, recall
and f1 score of 20 incremental datasets.
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Fig. 8: Setup time and process time cost of various methods on incremental datasts of datasets with various noise rate settings.
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Fig. 9: Noisy label detection process of ENLD when the noise rate is 0.1∼0.4 on CIFAR100. Shaded regions indicate standard
deviation over 20 incremental datasets.

data, and a large increase in the f1 score. However, when the
noise rate is 0.4, the label recall will decrease greatly with the
discovery of noisy samples, and the increase of the f1 score is
small and tends to flatten quickly. Therefore, under different
system requirements, the performance and process time can be
balanced by setting training iterations t. In practice, for scenes
with higher noise rates, smaller t can be selected to save the
process time of fine-grained noisy label detection.

D. Results of Sample Selection Strategy

In this section, we compare the performance of utilizing
various sample selection methods in the fine-grained noisy
label detection method on incremental datasets of CIFAR100
with various noise settings 0.1∼0.4 as shown in Fig. 10. It
can be concluded that the overall performance of original
contrastive sampling is superior to other strategies for the
noisy label detection tasks. Different from active learning,

because the true label of the sample cannot be obtained, the
gain of noisy label detection by adding the most uncertain
sample of the current model selected by entropy and least
confidence is low and close to the random policy. Compared
with the entropy, least confidence, and random policy, the
highest confidence policy, and pseudo policy have a higher
probability to select cleaner samples or obtain clean labels,
so they can provide a reference for the process of noise label
detection. Therefore, its performance is obviously better than
entropy, least confidence, and random policy.

E. Model Update

In this section, we show the results of the model update
process and data selection in ENLD. As shown in Table II,
we demonstrate the validation accuracy on the entire set of
incremental data and the other part of inventory data with
original model θ and updated model θu by the data selection
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Fig. 10: Performance of noisy label detection results with various sample selection methods on CIFAR100. Average precision,
recall and f1 score of 20 incremental datasets.
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Fig. 11: Performance of noisy label detection results with various hyperparameter settings on CIFAR100. Average precision,
recall and f1 score of 20 incremental datasets.
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perparameter settings on incremental datasets with CIFAR100
with various noise rate settings.

Noise Rate 0.1 0.2 0.3 0.4

Origin Model 58.93% 52.85% 45.08% 37.17%

Update Model 61.31% 57.06% 49.40% 37.23%

TABLE II: Validation accuracy on remaining data on CI-
FAR100 by original model θ and updated model θu before
and after the model update process.

result Sc when the noise rate is 0.1∼0.4 on CIFAR100. With
clean samples selected by multiple noisy label detection tasks
on incremental datasets, the generalization performance of the
updated model has been significantly improved compared with
the original one.

F. Hyperparameter Settings

In this part, we conduct experiments on various hyperpa-
rameter settings of contrastive samples size k = {1, 2, 3, 4}
as shown in Fig. 11 and Fig. 12. It can be concluded that
the performance of fine-grained noisy label detection increases
gradually with the number of samples sampled by contrastive
sampling, which also consumes more process time generally.
However, compared with the process time of k = 2 and k = 3,
the average process time does not increase but decreases. This
is because choosing a larger k represents that there will be
more contrastive samples for each ambiguous sample, which
will lead to faster convergence of the model in the finetune
training process. We think that the difference between setting
k = 2 and k = 3 becomes significant. This finally leads to
the average process time of setting k = 2 higher than that of
setting k = 3. In our experiments, we choose a sampling size
k = 3 with moderate performance and process time for all
datasets and noise rate settings. Especially, Fig. 4(c), Fig. 5(c)
and Fig. 7(c) show the f1 score of ENLD is slightly lower
than that of the comparison method when the noise rate is
0.4. As shown in Fig. 11, increasing the sampling size can
improve f1 scores when the noise rate is 0.4. Thus, we conduct
experiments when k = 4 for each dataset. Finally, ENLD
achieves average f1 scores of 88.06%, 73.86% and 72.62%
for EMINST, CIFAR100 and Tiny-Imagenet, which are higher
than 87.78%, 73.45% and 71.64% of the next best method,
Topofilter. Therefore, we suggest that ENLD should choose a
larger sampling size in the scene with a high noise rate.



G. Different networks

To observe the generalization capability of ENLD, we also
conduct experiments on ENLD and Topofilter with Densenet-
121 and ResNet-164 on incremental datasets of CIFAR100
as shown in Fig.6(a). For different networks, ENLD achieves
better performance than Topofilter and saves 2.46× and 2.64×
process time for Densenet-121 and ResNet-164.

H. Missing label cases

Missing label can be regarded as a special case of the
noisy label. We carried out extensive experiments on ENLD
to explore its ability to deal with missing labels. First, we
randomly set 25%, 50% and 75% samples in incremental
datasets of CIFAR100 as missing label data when the noise
rate is 0.2. ENLD will give a pseudo label for each sample
without the observed label in each step of fine-grained noisy
label detection. Each sample without the observed label will
obtain a final label by voting with pseudo labels. Fig. 13(a)
shows the average f1 scores of the pseudo label and noisy label
detection with different missing rates. It demonstrates that the
higher the missing rate of the incremental dataset, the lower
the performance of pseudo labels and noisy label detection.
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Fig. 13: (a) Average f1 scores of the pseudo label and noisy
label detection with different missing rates of incremental
datasets when the noise rate is 0.2 on CIFAR100. (b) Numbers
of ambiguous samples during the fine-grained noisy label
detection process on incremental datasets on CIFAR100.
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Fig. 14: Ablation study results on ablation settings with various
noise rate settings.
I. Ablation Study

And we conduct ablation study on ENLD to figure out the
importance of each part by removing each part of ENLD sep-
arately when the noise rate is 0.1∼0.4 on incremental datasets

of CIFAR100. ENLD-Origin represents the original version of
the ENLD method; Removing contrastive learning (ENLD-1),
ENLD with randomly selected data from contrastive samples
set, represents utilizing randomly chosen samples to update the
model in each step instead of contrastive sampling; Removing
majority voting (ENLD-2) represents update the clean set
once the predicted label is equal to the observed one; without
adding clean samples of the incremental dataset (ENLD-3),
which means removing C = C

⋃
S in fine-grained noisy label

detection. And we also propose ENLD-4 by using j = i
directly instead of j = random label(i, P̃ , label(H ′)) to
query the nearest samples with the same observed label in the
contrastive sampling method. As shown in Fig. 14, removing
contrastive learning (ENLD-1) cause the overall performance
of noise label detection to decline from 0.8139 to 0.6721 on
the average f1 score. Therefore, contrastive learning is an
essential part of ENLD. Removing majority voting (ENLD-
2) means a more aggressive clean sample selection strategy.
When the noise rate is low, the overall model is superior
and the classification task is simple. A more aggressive clean
sample selection strategy will bring a certain performance
improvement. However, when the noise rate rises, removing
majority voting will lead to greater randomness in the clean
sample selection process, and the overall performance will
be greatly reduced. Although without adding clean samples
of incremental datasets during the training process (ENLD-3)
reduces the process time of fine-grained noisy label detection
to a certain extent, the performance is also greatly reduced
due to the instability of its training process. As for ENLD-
4, for the case of low noise rate 0.1, the strategy of directly
selecting nearest samples that have the same observed label
with ambiguous samples in contrastive sampling is better.
However, for higher noise rates, such as 0.3 and 0.4, it is better
to estimate the true labels of ambiguous samples according
to the estimated conditional probability and then select high-
quality samples that have proximate representations.

VI. CONCLUSION

In this work, we propose a novel framework ENLD to effi-
ciently perform noisy label detection on incremental datasets,
including the fine-grained noisy label detection method with
contrastive sampling. The fine-grained noisy label detection
method has the ability to achieve superior noisy label detection
results for incremental datasets using only a small amount of
fine-tuning, which involves label probabilities, output confi-
dences, and relationships between the feature representations.
The extensive experiments show the effectiveness of ENLD
to perform noisy label detection on incremental datasets with
various noise rate settings.
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